
Software Guidelines 
for Non-Coders

Jaime Silvela
April 2017

0.- Admit you own software

• You wrote more than 10 lines of code, and some people
rely on them.

• … you own software. Care for it, or it will grow chaotic.
• Be aware of rising technical debt.

0.- Admit you own software

Technical debt Where we want to get

1.- Don’t be clever; be clear

 “The best writing is rewriting.” — E.B. White

“Simplicity does not precede complexity, but follows it.”
— Alan Perlis

“We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all
evil.” — Donald Knuth

1.- Don’t be clever; be clear

• It’s not about using the quickest algorithm or the
fanciest technology.

• It’s about mapping the problem domain into code as
clearly as possible.

• Keep clarifying and cleaning your program as it evolves.
• Give good names to things.

2.- Focus on your data structures

• Loops and conditionals are a done deal — like
bouncing the ball in basketball.

• Your data structures drive your algorithms.

“Show me your flowcharts and conceal your tables, and I
shall continue to be mystified. Show me your tables, and I
won’t usually need your flowcharts; they’ll be obvious.”

Fred Brooks in The Mythical Man-Month  
(Recommended book)

2.- Focus on your data structures
Example 1/3
• Design and algorithm to solve:
• Problem: given an array of numbers nums, and a radius r,

cluster the numbers in order to get a (kind-of) sparse
histogram with precision r.

• We don't want a proper histogram, because most
entries in the histogram would be 0. We're likely to
have fewer than 10 clusters, and want 1/100-th
precision.

• Example: nums = [1.2, 1.3, 5, 5.1, 5.5], r = 0.2 ➔ 1.2 ×
2, 5 × 2, 5.5 × 1

2.- Focus on your data structures
Example 2/3

People generally come up with complicated solutions.
Code that backtracks, complicated program state,
kernels, "matlabby" thinking…

2.- Focus on your data structures
Example 3/3
Now, define:

cluster {
value float,
count int

}

Restate the problem: we want algorithm clusterNumbers, such that
clusterNumbers(nums[], r) ➔ cluster[]

Imagine that we have a cluster array. If we are given a new number x to cluster,
do we know what to do?
addNumToClusters(num, r, clusters[]) ➔ clusters[]

3.- Program with pen and paper
or marker and whiteboard
… some of the time

• De-focus from syntax and micro detail.
• Focus on high level, get a broad view.
• Iterate on design ideas in this medium.

4.- Diagram the flow of data 
in your program

cf. 2 and 3
• Flow charts for loops/conditionals aren’t much use.
• Things like UML class diagrams, again, not that useful.
• Your data flow tells you what needs to happen where.

4.- Diagram the flow of data 
in your program

5.- Separate interface from implementation

ie. think of modules
• Think of each of your modules as a service to be called by

others.
• What is relevant for the users? This is your interface.
• Keep your interface small and clean.

“Each module is designed to hide [a design decision] from the
others.”

David Parnas in On the Criteria to Be Used in Decomposing
Systems into Modules  
(Recommended paper)

5.- Separate interface from implementation

Example 1/5

We're building a game with several kinds of enemy ships.
We hire Giulio to write a relativistic motion enemy. We
hire Nuria to write a magneto-hydrodynamic submarine
enemy.

5.- Separate interface from implementation

Example 2/5
• Giulio's code:
 func GravityAt(…) {…}
 func Speed(…) {…}
 …
• Nuria's code:
 func MagneticFieldAt(…) {…}
 func FriggingLaserBeam(…) {…}
 …

5.- Separate interface from implementation

Example 3/5

The animation loop is very complex, and needs to know details of relativity and magneto-hydrodynamics.

 func AnimationLoop() {
 forever {

 Sleep(deltaT)
 canvas = clearCanvas()
 for foe in AllFoes {
 if foe is Relativistic {
 foe.GravityAt(…)
 …	
 } else if is MagnetoHydrodynamic {
 foe.FriggingLaserBeam(…)	
 …	
 }
 }
 }
 }

5.- Separate interface from implementation

Example 4/5

Let's do it another way. The animation loop requires only that enemies be able to compute their
next state after some time has elapsed, and that they be able to draw themselves on a canvas.
• Giulio's new code:
 func NextState(dt time.Interval) {…}
 func DrawOn(canvas Canvas) {…}
 — Hidden —	
 func GravityAt(…) {…}
 …	
• Nuria's new code:
 func NextState(dt time.Interval) {…}
 func DrawOn(canvas Canvas) {…}
 — Hidden —
 func MagneticFieldAt(…) {…}
 …

5.- Separate interface from implementation

Example 5/5
• The new animation loop.
 func AnimationLoop() {
 forever {
 Sleep(deltaT)
 canvas = clearCanvas()
 for foe in AllFoes {
 foe.NextState(deltaT)
 foe.DrawOn(canvas)
 }
 }
 }

Everything is more robust. Nuria can change her implementation details if she wants, as long as she
upholds the interface. Giulio can use his code for another simulation that expects the same interface.

6.- Separate data from presentation

• The core of your programs is the problem domain’s
data and logic.

• Your presentation layer (UI’s, PDF’s …) should be
detached from domain logic.

• Do the main computations in domain logic, have
“dumb” presentation code.

6.- Separate data from presentation

Conflated data and presentation Decoupled

6.- Separate data
from presentation
Decoupling opens up many possibilities.

We can even handle parts of the process at
different times, in different workflows,
written in different languages.

7.- Inject your functional dependencies

• Don’t connect to a DB or other service in the middle of
your code.

• Every function/object that uses an external service
should name it as a parameter.

• I.e. the dependency gets injected.
• You should establish service connections very visibly in

one place.

7.- Inject your
functional

dependencies

func someStuff(…) {
 …
 dbConn = openDB("dbServer",
 "username",
 "password")
dbConn.Query("my SQL query")
 …
}

func moreStuff(…) {
 …
 dbConn = openDB("dbServer",
 "username",

 “password”)
dbConn.Query("another query")

 …
}

Don’t do this.

What if we want to run our program, only
connecting to a different database?

If we want to write tests, will we be
querying / modifying the production
database?

If we want to connect as a different user/
password, we need to find all points in our
programs that connect to the DB.

7.- Inject your
functional

dependencies

func someStuff(dbConn) {
 …
 dbConn.Query("my SQL query")
 …
}
func otherStuff(dbConn) {
 …
 dbConn.Query("another query")
 …
}
func main() {
 …
 dbConn = openDB("dbServer",
 "username",
 "password")
 …
 someStuff(dbConn)
 …
 moreStuff(dbConn)
 …
}

Do this instead.

As a side benefit, the function signature will
provide clear documentation that a
function depends on the database.

8.- Test in code. Don’t overdo it

• Test domain logic.
• Test interfaces.
• Testing low level implementation detail is not as clearly

beneficial.
James Coplien on unit testing

http://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf
http://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf
http://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf

9.- Limit your external dependencies

• You may like an external library that makes
something easier for you.

• In a few months, it may be incompatible, or
vanished.

• Try to depend only on well established libraries.
• If you need only a tiny fraction of an external library,

think of copying.
• You may want to store your dependencies as part of

your code repository.
• Three fallacies of dependencies

https://youtu.be/yi5A3cK1LNA

10.- Use good tools

• Use version control. Even for small projects. Even for
documentation.

• Use a good programming text editor. Eg: Visual
Studio Code, Emacs, Atom.

• Use a font meant for coding. 0	=	O?	1	=	l	=	I?
Eg. Consolas, Source Code Pro.

• Collect notes, bugs, TODO items, in a file(s) where
you look often.

• If you’re in a team, share that info. Maybe JIRA?
(awful but useful)

11.- A few gotchas

• Floating point numbers are tricky. 0.2 + 0.1 ≠ 0.3
• Text encoding: try to read/store all text as UTF-8.
• Case sensitivity; most modern stuff is case-sensitive.

But …
• Case in-sensitive: SQL*, Windows file names*,

Fortran, Lisp.
• Line endings: Unix/Linux and Windows use different

codes for newlines.
• “Smart” programs like Excel may modify your data.

