
(Re)Learning Object
Oriented Programming

with Go

Jaime Silvela
August, 2017

Agenda

• Origin of OO

• Some pitfalls of OO

• Recommendations

• OO with Go

Origins of OO

Non-OO programming
• Data

• Simple: ints, floats, strings

• Structs aka. records

• Arrays

• Maps aka. hashes aka. associative arrays

• Functions

Case study 1: video game
• Alice is writing the main animation loop, Bob and Chuck are

writing each a different foe.

bob_foe{…}
chuck_foe{…}
extra_state{…}

forever {
 clear_canvas()

 move_uniformly(&bob_foe)
 bob_display_on_canvas(&bob_foe, &canvas)
 move_relativistically(&chuck_foe, &extra_state)
 blah_blah(&extra_state)
 chuck_display(&chuck_foe, &canvas)
 …

Case study 1: video game

• Alice needs to learn how to use each type of foe.

• Implementation details are all over the place.

• We could inadvertently use the wrong function for a foe.

• If we had, say, 10 types of foe we’d have a mess on our
hands.

Case study 2: a database
connection library

• Don has written a database connection library. Emma needs
to query a database.

dbConn {
 hostname: foo.bar,
 username: admin,
 password: 12345,
 ConnectionPool: …
}

main () {
 …
 query(“my query”, &dbConn)
 …
}

Case study 2: a database
connection library

• Emma learns she can manipulate the Connection Pool to get
faster queries.

dbConn {
 hostname: foo.bar,
 username: admin,
 password: 12345,
 ConnectionPool: …
}

main () {
 …
 emma_query(“my query”, &dbConn.ConnectionPool)
 …
}

Case study 2: a database
connection library

• Don has found a much better way to build the Connection Pool.
His new release is much faster … and breaks Emma’s code.

dbConn {
 hostname: foo.bar,
 username: admin,
 password: 12345,
 NewConnectionPool: …
}

main () {
 …
 emma_query(“my query", &dbConn.AAAARGHH)
 …
}

Case study 2: a database
connection library

• The leaking of implementation details ends up causing
unwanted coupling.

• Change becomes difficult gradually; codebases become
fossilized.

• Precursors: Simula, Sketchpad (1960s)

• Alan Kay, biological inspiration … Smalltalk (1970s)

Glucose

Ca
Message Passing

The genesis of OO

Cell By domdomegg (Own work) [CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

Message Passing:
DB connections

• Cells and messages … objects and methods.

• Information hiding.

DBConn

query(text)

exec(text)

DBConn12.query(“select * from foo”)

Message Passing:
video game

• The extra_state Chuck uses is now out of sight. The objects
Chuck and Bob wrote start to look similar …

Chuck Foe
move_relativistically(dt)

chuck_display(canvas)

Bob Foe
move_uniformly(dt)

bob_display_on_canvas(canvas)

Message Passing:
Polymorphism

• We unify the interface. An OO language can now treat Bob
and Chuck’s objects interchangeably.

Chuck Foe
update(dt)

display_on(canvas)

Bob Foe
update(dt)

display_on(canvas)

Message Passing:
video game loop

foes = [bob_foe, chuck_foe]

forever {
 clear_canvas()

 foreach foe in foes {
 foe.update(dt)
 foe.display_on(canvas)

 }
}

Message Passing:
video game

• Alice doesn’t need to change her loop to support new foes.

• Conventional interfaces enable mixing and matching: Alice,
Bob and Chuck can offer their modules to other parties.

Modern OO languages
• Object types are called “classes”, objects are “instances”.

• Polymorphism is generally conceived as class inheritance.

Foe
update(dt)

display_on(canvas)

BobChuck

subclass
subclass

Some pitfalls with OO

Complexity
• Class inheritance has become an end, rather than the means

for polymorphism. Bloated class hierarchies.

• Complexity in the languages:

• virtual / abstract

• private / protected / public

• static / class methods vs. instance methods

• copy-constructors, references

Dogma

• “Everything is an Object” mantra, even in places where it
doesn’t work well.

• Design Patterns used where simple solutions would be much
better.

• Programmers begin design with a taxonomy of classes.

• Don’t Repeat Yourself (DRY) used to justify abuse of
inheritance.

Misuse of inheritance
class Point2 {
 public final double x;
 public final double y;

 Point2(double x, y) {
 this.x = x;
 this.y = y;
 }

 public double length() {
 return sqrt(x^2 + y^2);
 }
 …

class Point3 extends Point2 {
 public final double z;

 Point3(double x, y, z) {
 super(x, y);
 this.z = z;
 }

 public double length() {
 return sqrt(z^2 +
 super.length()^2
);
 }
 …

Misuse of inheritance
• Only a programmer could think this was a good idea.

 // class Point2 contd.
 …
 public double sqrlen1() {
 return x^2 + y^2;
 }

 public double sqrlen2() {
 return length()^2;
 }
}

 // class Point3 contd.
 …
 // inherits sqrlen1
 // inherits sqrlen2
}

Point3 pt3 = new Point3(0, 0, 5);
pt3.sqrlen2(); // 25
pt3.sqrlen1(); // 0

Recommendations

Prefer composition to
inheritance

• Stated in the seminal (and dangerous) book Design Patterns
by Gamma et al. 1994.

class Point3c {
 public final Point2 base;
 public final double z;

 Point3c(double x, double y, double z) {
 this.base = new Point2(x, y);
 this.z = z;
 }

 public double length() {
 return sqrt(base.length()^2 + z^2);
 }
}

Prefer to inherit from
virtual classes

• If we forgo inheritance of implementation, we use class
inheritance only for polymorphism, as should be.

• The DRY principle sometimes used as justification to look at
inheritance of implementation for “code re-use”. RESIST!

Liskov Substitution
Principle

• Introduced by Barbara Liskov, 1987:

Let Φ(x) be a property provable
about objects x of type T.

Then Φ(y) should be true for objects y of type S
where S is a subtype of T.

• Make sure your hierarchies actually obey an “is a”
relationship. (eg. a Point in 3D is not a Point in 2D)

Interfaces > Inheritance
• Java introduced interfaces to avoid C++ multiple inheritance.

• Go takes them to their natural conclusion.

• Interfaces specify the messages, without implementation.

type Foe interface {
 Update(dt time.Duration)
 DisplayOn(c Canvas)
}

func (c ChuckFoe) Update(dt time.Duration) {
 …
}

Back to the essence of OO
• OO should not be primarily about inheritance and code re-use.

• OO is a strategy to design the high level structure of a system.

• Information Hiding.

• Message Passing as a metaphor to focus on conventional
interfaces.

• Read article (8 pages): On the Criteria To Be Used in
Decomposing Systems into Modules by David L. Parnas, 1971.

• If you want to learn OO, learn Go.

https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

OO with Go
Hey! Ho! Let’s Go!

OO with Go
• Interfaces everywhere.

• Composition everywhere.

• Duck typing, statically checked by the compiler.

• First-class functions. Not everything is an object.

• No subclasses, no classes, no virtual, static, protected.

• Anything can be a message receptor.

Duck typing
• Only dynamic languages could do this until Go.

package duck

type Duck interface {
 Quack()
 Walk()
}

func playWithDuck(duck Duck) { … }

func doSomeStuff() {
 mallard := otherPackage.GetMallard()
 // otherPackage does not “declare” Duck,
 // but Mallard has Quack() and Walk() methods
 playWithDuck(mallard) // This is fine

But I miss implementation
inheritance!

• If I implemented Newtonian motion as the Update() for the
top-level class Foe, Bob and Chuck could inherit it. That
would be very DRY.

type MotionState struct {
 Position Vector3D
 Speed Vector3D
}

type LawOfMotion func (*MotionState, time.Duration) *MotionState

type BobFoe struct {
 ammo int
 mState *MotionState
 move LawOfMotion
}

func (b *BobFoe) Update(dt) {
 // update b.ammo …
 b.mState = b.move(b.mState, dt)
}

But I miss implementation
inheritance!

• Still miss it?

// LawOfMotion: Newtonian, Relativistic, Brownian

// bob.MakeFoe(mover LawOfMotion)
// chuck.MakeFoe(move LawOfMotion, sh DefenseMechanism)
// emma.MakeFoe(move LawOfMotion, wp Weapon)

b := bob.MakeFoe(Newtonian)
c := chuck.MakeFoe(Relativistic, HideHeadInSand)
e := emma.MakeFoe(Newtonian, FriggingLaserBeam)

• OO purists would have implemented LawOfMotion as a class
hierarchy, and used the Strategy Pattern. Ugh!

Alan Kay, 1997

Actually I made up the term “object-oriented”,
and I can tell you I did not have C++ in mind.

The Computer Revolution hasn't happend yet — 1997 OOPSLA Keynote

https://en.wikiquote.org/wiki/Object-oriented
https://en.wikiquote.org/wiki/C%2B%2B
http://www.youtube.com/watch?v=oKg1hTOQXoY

This work is licensed under a
Creative Commons Attribution-
ShareAlike 4.0 International
License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

